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Abstract. A supersymmetric extension of the classical dispersive water wave equation is
proposed. The system is shown to be tri-Hamiltonian. In particular, the second Hamiltonian
structure is analogous to theN = 2 superconformal algebra. A gauge map to the even-parity
super KP system is exhibited.

1. Introduction

The classical dispersive water wave equation has been known for a long time. By looking
upon this equation as the first in a hierarchy of equations, Kupershmidt found the system
to be integrable. There were other interesting results. The hierarchy has a tri-Hamiltonian
structure and is the first among a new kind of integrable systems which have come to be
known in the literature as non-standard integrable systems [1]. Today, the fields involved
in the classical dispersive water wave equation form the basis of the two-boson realization
of W1+∞ andŴ∞ algebras. In this paper, we start with a superfield version of the pseudo-
differential operator associated with the aforesaid hierarchy. At this point it may be noted
that the usual supersymmetrization procedure of replacing all the derivatives ‘∂ ’ by their
counterpart ‘D’ does not lead always to equations which will give back the ordinary system
as a special case. An important example is the KP hierarchy [3]. On the other hand, the
even-order SKP (super KP) equation does possess all these nice features. Keeping this in
mind we have considered a Lax operator of the formL = D2 + u + hD−1. The resulting
second flow reduces to the classical one when the odd fields are set to zero. We next
study the Hamiltonian structures proceedingà la Kupershmidt. The second Hamiltonian
structure is analogous to the classicalN = 2 superconformal algebra [4]. The third
Hamiltonian structure turns out to be non-local. It has been known for sometime that
the equations of motion in quantum 2D gravity can be formulated in terms of integrable
nonlinear equations of the KdV type. Since all the KdV hierarchies are contained in the
larger integrable system, i.e. the KP hierarchy, it has been conjectured that it provides a
universal framework exhibiting the underlying structure of 2D quantum gravity. The even-
parity superlax operator appears to play a similar role in quantum supergravity and our
system is a special case—a constrained one—of the even-order super KP system considered
by Watanabe [5]. Finally, by a gauge transformation, we arrive at the even-parity pseudo-
differential operator of the super KP hierarchy [6].
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2. The dispersive water wave hierarchy

The classical dispersive water wave equation studied by Kupershmidt is of the form

ut = 1
2(u

2 + 2h− ux)x

ht = 1
2(2uh+ hx)x. (1)

He found this to be the first (withP = 1
2L

2) member of the hierarchy given by

Lt = [(P+)>1)
+, L] = [L, ((P+)60)

+] (2)

with

L = ∂ + u+ h∂−1 P =
∑
s

∂sps(m) (3)

andP ∈ z(L), the centralizer ofL in the ring of pseudo-differential operators.P+ is the
adjoint ofP given byP+ = ∑

s(−1)sps(m)∂s .
Hierarchy (2) is a tri-Hamiltonian system. ForP = Lm, it can be written in the form(

ut
ht

)
= B IδHm+1 = B IIδHm = B III δHm−1 (4)

where

δH =
(
δH
δu
δH
δh

)
B I =

(
0 ∂

∂ 0

)
(5)

B II =
(

2∂ ∂u− ∂2

u∂ + ∂2 h∂ + ∂h

)
(6)

B III =
(

2(u∂ + ∂u) 2(h∂ + ∂h)+ ∂(u− ∂)2

2(h∂ + ∂h)+ (u+ ∂)2∂ (u+ ∂)(h∂ + ∂h)+ (h∂ + ∂h)(u− ∂)

)
. (7)

3. The superfield extension

We shall consider the hierarchy

Lt = [L, ((P+)60)
+] = [((P+)>1)

+, L] (8)

with L = D2 + u + hD−1, u being an even superfield andh odd. (D = ∂θ + θ∂x). With
P = 1

2L
2, we get the following equations:

ut = 1
2(−u(4) + 2uu(2) + 2h(3)) (9)

ht = 1
2(h

(4) + 2uh(2) + 2u(2)h). (10)

Let u = u1 + θφ1 whereu1 is even andφ1 is odd andh = ψ1 + θh1 whereh1 is even and
ψ1 is odd (Dn(f ) = f (n) denotes thenth-super derivative off ). Then equations (9) and
(10) are, in component form,

u1,t = 1
2(−u1,x + u2

1 + 2h1)x (11)

φ1,t = 1
2(−φ1,x + 2u1φ1 + 2ψ1,x)x (12)

ψ1,t = 1
2(ψ1,x + 2u1ψ1)x (13)

h1,t = 1
2(h1,x + 2u1h1 + 2φ1ψ1)x. (14)
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Note that settingφ1 = 0, ψ1 = 0 gives equations foru1 andh1 identical to equation (1).
Let us now write down a general form of (8). With P=Lm=

∑
s Dsps(m)

[L, ((P+)60)
+]>−1 = p

(2)
0 (m)− p

(2)
−1(m)D

−1 + · · ·
ut = p

(2)
0 (m) ht = −p(2)−1(m) (15)

p0(m) = δHm+1

δh
p−1(m) = δHm+1

δu
. (16)

4. The Hamiltonian structures

If Lm = ∑
s Dsps(m), the corresponding adjoint operator is defined to be [2]

(L+)m =
∑
s

(−1)[s/2]ps(m)D
s

where [S/2] is the largest integer which does not exceedS/2. In defining the adjoint
operator, we have simply supersymmetrized the definition of Kupershmidt in [1]. The same
definition has also been adopted in [2].

Let us use the identity

(L+)m+1 = L+(L+)m (16a)

which, written in full, leads to the following∑
s

(−1)[s/2]ps(m+ 1)Ds = (−D2 + u− D−1h)
∑
s

(−1)[s/2]ps(m)D
s .

Equating the coefficients of D0, D−1, D−2 and D−3 on both sides, we obtain the following
recurrence relations:

p0(m+ 1) = −p(2)0 (m)+ p−2(m)+ up0(m)

+
∞∑
j=0

{hp2j+2(m)}(2j+1) −
∞∑
j=0

{hp2j+1(m)}(2j) (17)

−p−1(m+ 1) = p
(2)
−1(m)− p−3(m)− up−1(m)

−
∞∑
j=0

{hp2j+1(m)}(2j+1) +
∞∑
j=0

{hp2j (m)}(2j) (18)

−p−2(m+ 1) = p
(2)
−2(m)− p−4(m)− up−2(m)

−
∞∑
j=0

{hp2j (m)}(2j+1) +
∞∑
j=0

{hp2j−1(m)}(2j) (19)

p−3(m+ 1) = −p(2)−3(m)+ p−5(m)+ up−3(m)+
∞∑
j=0

{hp2j−1(m)}(2j+1) =
∞∑
j=0

{hp2j−2(m)}(2j). (20)

On the other hand we can also use the following relation which is nothing other than (16a)
written in reverse order,

(L+)m+1 = (L+)mL+

or ∑
s

(−1)[s/2]ps(m+ 1)Ds =
∑
s

(−1)[s/2]ps(m)D
s(−D2 + u− D−1h).
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Equating the coefficients of D−1, D−2 and D−3 on both sides we obtain another set of
recurrence relations:

−p−1(m+ 1) = −p−3(m)− p−1(m)u+ p0(m)h (21)

−p−2(m+ 1) = −p−4(m)− p−1(m)u
(1) − p−2(m)u− p0(m)h

(1) + p−1(m)h (22)

p−3(m+ 1) = p−5(m)+ p−1(m)u
(2) + p−3(m)u− p0(m)h

(2) − p−2(m)h. (23)

Eliminatingp−2(m), p−3(m), p−4(m) andp−5(m) from these equations, we finally get

p
(2)
0 (m+ 1) = (−D4 + uD2 − hD + u(2))p0(m)+ (u(1) − 2h− 2D3)p−1(m) (24)

−p(2)−1(m+ 1) = (2hD2 + h(2))p0(m)+ (−D4 − uD2 + hD − h(1)p−1(m). (25)

So we may now write the Hamiltonian structures as(
ut
ht

)
= B I

(
p−1(m)

p0(m)

)
= B II

(
p−1(m− 1)
p0(m− 1)

)
(26)

with

B I =
(

0 D2

−D2 0

)
(27)

B II =
(

u(1) − 2h− 2D3 −D4 + uD2 − hD + u(2)

−D4 − uD2 − h(1) + hD 2hD2 + h(2)

)
. (28)

So equations (27) and (28) yield the first and second Hamiltonian structure of the
equations (11)–(14). One may note that since D2 = ∂, the first symplectic form is identical
to that of the ordinary dispersive water wave equation. The second symplectic operator, in
the limit when all the odd variables go to zero, reproduces that of Kupershmidt. We can
now proceed to determine the third symplectic operator in the present case. We first of all
note that the evolution of the superfields(u, h) can also be written as follows

ut = (u(1) − 2h− 2D3)p−1(m− 1)+ (−D4 + D2u− hD)p0(m− 1) (24a)

ht = (−D4 − uD2 − Dh)p−1(m− 1)+ (D2h+ hD2)p0(m− 1) (25a)

and using relations (24) and (25) and their derivatives (withm replaced bym− 2), we can
finally write (

ut
ht

)
= B I

(
p−1(m)

p0(m)

)
= B II

(
p−1(m− 1)
p0(m− 1)

)
= B III

(
p−1(m− 2)
p0(m− 2)

)
with

B III =



−4uD3 − 2u(1)D2 − 2u(2)D D6 − 2uD4 − 2hD3

+u(u(1) − 2h)− u(3) + u(1)D−1h +(4h(1) − 3u(2) + u2)D2

−hD−1u(1) + (u(1) − 2h)D−2uD2 −(h(2) + 2uh)D
+u(2)D−2(u(1) − 2h) −u(4) + 2u(2)u+ 2h(3)

+hD−1hD − (u(1) − 2h)D−2hD2

−D6 − 2uD4 − 2hD3

−(u2 + 2h(1) + u(2))D2 −u(2)D−2hD(2h(2) + 4uh)D2

+(−h(2) + uh)D − h(3) − uh(1) + 2hu(1) +h(4) + 2uh(2) + 2hu(2)

−h(1)D−2uD2 + h(2)D−2(u(1) − 2h) +h(1)D−2hD2

−h(1)D−1h+ hD−1uD2 −hD−1hD2 − h(2)D−2hD


.

(29)
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5. N = 2 superconformal algebra

Let us now consider the second Hamiltonian structureB II more carefully. Writing out the
superfields in terms of the components

u = u1 + θφ1 h = ψ1 + θh1

we can evaluate the Poisson or super Poisson brackets from equations (24a), (25a). For
example, consider

ut = B II
11
δHm

δu
+ B II

12
δHm

δh

ht = B II
21
δHm

δu
+ B II

22
δHm

δh

whereB II
ij are the elements of the matrixB II . Now from the definition of the symplectic

operatorB II we get

{u(x), u(y)}2 = B II
111(x − y)

= (u(1) − 2h− 2D3)1(x − y)

where1(x − y) is the super delta function

1(x − y) = (θ1 − θ2)δ(x − y).

Also,

{u(x), h(y)}2 = B II
121(x − y)

= (−D4 + uD2 − hD + u(2))1(x − y).

Recalling our definition on page 2854 ofu andh

u = u1 + θφ1 h = ψ1 + θh1

we get

u(1) = 2h = θ1u1,x + ψ1 = 2ψ2 − 2θ1u2.

So,

(u(1) − 2h− 2D3)1(x − y) = −2∂xδ(x − y)− θ1(ψ1 − 2ψ2)δ(x − y)

+θ2(ψ1 − 2ψ2)δ(x − y)+ θ1θ2(−u1,x + 2u2 + 2∂2
x )δ(x − y)

= {u1(x), u1(y)}2 + θ2{u1(x)1ψ1(y)}2 + θ1{ψ1(x), u1(y)}2

−θ1θ2{ψ1(x), ψ1(y)}2.

Comparing the coefficients of 1,θ1, θ2 and θ1θ2 in the above two expressions we get, for
instance, the Poisson brackets (30) to (33). The others can be similarly obtained.

The full set of Poisson brackets is:

{u1(x), u1(y)}2 = −2∂xδ(x − y) (30)

{u1(x), ψ1(y)}2 = {ψ1(x)− 2ψ2(x)}δ(x − y) (31)

{ψ1(x), u1(y)}2 = −{ψ1(x)− 2ψ2(x)}δ(x − y) (32)

{ψ1(x), ψ1(y)}2 = {u1,x(x)− 2u2(x)− 2∂2
x }δ(x − y) (33)

{u1(x), ψ2(y)}2 = −ψ2(x)δ(x − y) (34)

{u1(x), u2(y)}2 = {∂2
x − u1(x)∂x − u1,x}δ(x − y) (35)

{ψ1(x), ψ2(y)}2 = {−∂2
x + u1(x)∂x − u2(x)}δ(x − y) (36)

{ψ1(x), u2(y)}2 = −{ψ1(x)∂x − ψ2(x)∂x − ψ1,x(x)}δ(x − y) (37)
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{ψ2(x), u1(y)}2 = ψ2(x)(x − y) (38)

{ψ2(x), ψ1(y)}2 = {−∂2
x − u1(x)∂x − u2(x)}δ(x − y) (39)

{u2(x), u1(y)}2 = (−∂2
x − u1(x))δ(x − y) (40)

{u2(x), ψ1(y)}2 = −{ψ1(x)∂x + ψ2,x(x)+ ψ2(x)∂x}δ(x − y) (41)

{ψ2(x), ψ2(y)}2 = 0 (42)

{ψ2(x), u2(y)}2 = −{2ψ2(x)∂x + ψ2,x(x)}δ(x − y)

{u2(x), ψ2(y)}2 = −{2ψ2(x)∂x + ψ2,x(x)}δ(x − y) (43)

{u2(x), u2(y)}2 = −{2u2(x)∂x + u2,x(x)}δ(x − y). (44)

Let us define

T = −u2 + 1
2u1,x U = u1 G+ = ψ2 G− = ψ2 − ψ1. (45)

Then we get the following Poisson brackets between these fields:

{T (x), T (y)}2 = − 1
2∂

3
x δ(x − y)+ 2T (x)∂xδ(x − y)+ Tx(x)δ(x − y) (46)

{T (x), U(y)}2 = U(x)∂xδ(x − y) (47)

{T (x),G+(y)}2 = 3
2G

+(x)∂xδ(x − y)+ 1
2G

+
x (x)δ(x − y) (48)

{T (x),G−(y)}2 = 3
2G

−(x)∂xδ(x − y)+ 1
2G

−
x (x)δ(x − y) (49)

{U(x),G+(y)}2 = −G+(x)δ(x − y) (50)

{U(x),G−(y)}2 = G−(x)δ(x − y) (51)

{G+(x),G+(y)}2 = 0 (52)

{G+(x),G−(y)}2 = {∂2
x − T (x)}δ(x − y)+ {U(x)∂x + 1

2Ux(x)}δ(x − y) (53)

{G−(x)1G−(y)}2 = Ux(x)δ(x − y). (54)

From equations (46)–(49), we can identifyT as the energy–momentum tensor,U as a spin
1-field,G+ andG− as spin-32 fields. The above algebra is analogous to the classicalN = 2
super conformal algebra.

Finally, let us consider a gauge transformation on the operatorL:

L′ = e−φLeφ.

This L′ is then of the form

L′ = D2 + u−1 + u0D−1 + u1D−2 + · · ·
with u−1 = u+ φ(2), u0 = h, u1 = hφ(1), u2 = −hφ(2), and so on.

L′ has the form of the even-parity superlax operator of the super KP hierarchy [6]. It
should be pointed out that in [6] theN = 2, superconformal algebra was also deduced from
the super Gelfand Dickey formulae.

6. Discussion

In our above analysis we have demonstrated that an extension of the Lax operator in the sense
of an even-order super KP hierarchy can lead to a sensible super extension of dispersive
water wave equation. It may be added that an extended form of the dispersive water wave
equation was previously given by Kupershmidt himself [7] but it did not involve any odd
variables.
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